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SUMMARY 

A new finite element method is presented for the solution of two-dimensional transport problems. The 
method is based on a weighted residual formulation in which the method of characteristics is combined 
with the finite element method. This is achieved by orienting sides of the space-time elements joining 
the nodes at subsequent time levels along the characteristics of the pure advection equation associated 
with the transport problem. The method is capable of solving numerically the advection-diffusion 
equation without generating oscillations or numerical diffusion for the whole spectrum of dispersion 
from diffusion only through mixed dispersion to pure convection. 

The utility and accuracy of the method are demonstrated by a number of examples in two space 
dimensions and a comparison of the numerical results with the exact solution is presented in one case. 
A very favourable feature of the method is the capability of solving accurately advection dominated 
transport problems with very large time steps for which the Courant number is well over one. 
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INTRODUCTION 

Environmental impact studies require accurate predictions of dispersion of pollutants in the 
atmosphere, bodies of water or in the ground by seepage. The dispersion of pollutants occurs 
by both advection and turbulent diffusion. Owing to the complex variations in the environ- 
mental conditions in time and space, the analyst is generally limited to numerical model 
studies in predicting transport of pollutants. 

A group of papers presented’” at the First International Conference on Finite Elements in 
Water Resources gave a review and comparison of several numerical methods for the 
solution of the advection-diffusion equation. From these studies it can be concluded that 
most of the numerical methods give accurate results for diffusion-dominated transport 
problems. However, when the transport is dominated by advection, numerical solutions 
exhibit oscillations and overshooting or numerical diffusion and clipping errors in the 
neighbourhood of sharp fronts. Reduction of time step or reduction of space increment to 
practically meaningful levels is not sufficient for eliminating numerical difficulties encoun- 
tered in some advection-dominated transport problems. Neither higher order finite ele- 
m e n t ~ ~  nor higher order integration schemes in time’ eliminate oscillations even in some 
one-dimensional transport problems. 

The  author^^,^ utilized the method of characteristics in a space-time finite element 
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framework to solve accurately the advection-diff usion equation in one space dimension. The 
method degenerates into the method of characteristics for pure advection problems and into 
a conventional space-time finite element method' for pure diffusion problems. 

The derivation of the method will be given here for transport problems in two space 
dimensions. The transport problem is solved step by step in time. The spatial mesh at the end 
of each time step is obtained by moving the nodes of the spatial mesh at the beginning of the 
time step along the characteristics of the associated pure advection problem. Discretization 
of the problem is achieved in the framework of an unconventional isoparametric finite 
element method in space-time. A detailed study of isoparametric elements is given by Oden' 
and Zienkiewicz." Isoparametric space-time elements are employed to solve free boundary 
problems associated with the heat and to solve the systems of equations 
representing conservation laws.I3 

The utility and accuracy of the method are illustrated by three two-dimensional test 
problems. The numerical results for the first test problem are compared with the exact 
solution. In contrast to several numerical methods14-16 numerical results for two-dimensional 
problems given here and el~ewhere, '~ demonstrate that very accurate results are obtained for 
very large time steps for which the Courant number is well over one. Previously, this 
property of the method was also demonstrated for linear and non-linear transport problems 
in one dimension?Zl8 

STATEMENT OF THE PROBLEM 

The horizontal scales of motions in the lakes and oceans are much greater than the vertical 
scales and therefore, in many cases, the horizontal and vertical dispersions may be consi- 
dered separately." The partial differential equation governing the horizontal dispersion of an 
effluent patch in an incompressible flow in two space dimensions x and y can be written as 

Here, the x-axis is chosen in the direction of the mean current. The eddy diffusion 
coefficients Dx, D, and the velocity components u, v are given. The solute concentration 
C(x, y, t )  is sought. The flow region of interest and time are denoted by and t, respectively. 
The development of the method will be given for a concrete example in which the boundary 
condition and the initial condition are prescribed respectively as 

a c  aC 
ax aY 

D,-n,+D,-n,=O on an, t > O  

C(X, Y, 0) = f(x, Y)  in 51. (3) 

Here, n(%, n,) denotes the outer normal unit vector at a point on the boundary an. 

THE METHOD OF WEIGHTED RESIDUALS 

Let c(x, y, t )  be a weighted residual approximation to the solution of equation (1) which 
satisfies the boundary condition and the initial condition (equations (2)-(3)). The vanishing of 
the weighted residual of equation (1) with respect to a continuous weighting function 
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w(x, y, t )  defined in 0, for 0 i t "  i t 5 tntl can be expressed as 

ax ax a y a y  ax ay 
aw acaw acaw aw - c-+D, - -+DY - -- UC-- 

t" I I![ n a t  

+ I cw(un ,+vn , )dsd t=O 
t" an 

(4) 

Here, ds denotes the arc length along the boundary aR. The line integral on aR will be 
evaluated on the counterclockwise direction. 

DISCRETIZATION BASED ON CHARACTERISTICS 

Let t" and fn+' denote the beginning and the end of a typical time step. The problem will be 
solved step by step in time employing finite elements in space and time. 

Consider a discretization of the region of interest R at t = tn by triangular area elements. 
Let P;(x;, y;, t;) denote a typical node at time t = tn in the region R or on the boundary 80. 

In order to discretize the domain of integration (equation (4)), (x, y) E R and t" < t < tat', 
by spatial-temporal volume elements, a node P:+'($+', yr+', t;") at t = tntl is associated 
with each typical node P;. To a typical triangular area element K 3 k  with nodes P:P;P; in R 
at t = t", there corresponds a typical prism volume element V i j k  in the x - y - t space which is 
obtained by joining the associated nodes of the triangular bases (PrPj'P; and P;+lPy+lP;+l) 
as subsequent time levels t" and tn+l as shown in Figure 1. 

Typical line segments P;PYi1 joining the associated nodes at subsequent time levels are 
oriented along the linearized characteristics of the hyperbolic equation which is obtained by 
substituting D, = 0 and D,, = 0 into equation (l), thus 

$+I= x;+( t"+l - t")U(P") ,  y;+1= y;+(t"+l- t")v(P;) ( 5 )  

'~ X 
I 

Figure 1. A typical prism volume element 
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In the following formulation, we are interested in investigating dispersion of an effluent patch 
in an infinite region. For this model, the concentration distribution at infinity should vanish. 
In order to solve a problem in an infinite region numerically, the finite region IR is taken 
large enough initially and the nodes on alR are allowed to move along the characteristics 
(equation (5)) at each time step so that the boundary is sufficiently far away from the patch at 
all times. The flow region at t = tn and t = tntl  is illustrated in Figure 2. 

Finite element approximation 

In order to derive a finite element approximation to equation (4), the prism volume 
elements are transformed from the x - y - t global co-ordinate system to the q - 5 - t; local 
co-ordinate system such that the transformed volume element is a unit right triangular prism. 
In the local co-ordinates, the approximate solution over a typical right unit triangular prism 
will be taken as a polynomial of the form 

4% 5, t;)=rl[(l-t;)c:+t~~+'l+5[(1-t)cl"+t;~~+11 
+ (1 - rl - "- t;)c;E+ t;~S"l (6) 

in which c,"(q = i ,  j ,  k ;  m = n, n + 1) denote the nodal values of the approximating function, 
c (P,"). It can be easily verified that the co-ordinate transformation i s  also achieved employ- 
ing the shape functions used in equation (6). Therefore, the finite elements are isoparametric. 

At a typical time step n, the nodal values c: of the approximating function are prescribed 
for n = 0 or are evaluated at the previous step for n > 0. Therefore, there is one unknown 
c:+l for each node P:+' in IR or on the boundary an. 

Let V denote the space of all continuous functions defined on triangular prisms by 
equation (6). A function w in V is uniquely determined by its values at all the nodes. The 
weighting function w'"(x, y, t )  for each node will be defined as a function of the space V as 
follows: I3  

0 if m f i  (7) 

Y X  

Figure 2. Transformation of the flow region at a typical time step 
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This definition of the weighting function wm ensures that 

1 w m ( x , y , t ) = l ,  ( x , y > E ~ n ( t > ,  t n < t < t n + l  
m 

Therefore, the conservation relation is satisfied in integral form at each time step. 
For brevity, we define Iijk and Sijk as 

177 

(8) 

for an arbitrary continuous function + defined on the domain of integration of each integral. 
Replacing w(x, y ,  t) by wm in equation (4), a system of linear equations 

+Si jk (CWrn)  =o, m = 1,2 , .  . . , N (11) I 
in the unknowns c:+' at nodes (i = 1,2,. . . , N) is obtained. The summation is 
performed over all the triangular area elements in 0 at t = tn. In obtaining equation (ll), the 
boundary contribution given by the last integral in equation (4) is neglected. This approxima- 
tion is believed to be appropriate for the dispersion analysis of an effluent patch in an infinite 
region, although the non-vanishing contributions from the boundary aR can be easily 
incorporated in the formulation if the effect of the boundary is thought to be important. 
Here, it should be noted that the concentration distribution on din is not taken as zero. But, 
the concentration distribution on the boundary a 0  far away from the patch is assumed not to 
affect the concentration distribution inside the patch as in the case of an infinite region. 

The system of linear equations can be constructed by evaluating element contributions in 
equation (11) by numerical integration. The explicit form of the system of linear equation 
will be given for the case u = constant, 21 =constant, D, =constant, D, = constant. The 
resulting equations in this case are 

(Q + Z)C"+' = (Q - Z)C" (12) 
where 

en+' = {c;+', c;+e, . . . , cF;ey,  5 = 0 , l  

and, Q and Z are a diagonal and a banded symmetric matrix, respectively. The elements of 
the matrices Q and Z are obtained by summing up the volume and area element contribu- 
tions associated with all the triangular elements in Cn at t = t" as 
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Table I. Definition of symbols 

Indices 
Symbols i i k 

X" xT;-x; xn-x;: xy-x: 
Y" y;-y;: YE-Y: Yn-Y; 
A :Y gxny:+ x;Y;+ X;:YE) 

Total contributions associated with a typical triangular element Kak (PrPYP;) are given by 

(D,Y;Y;+ D,X;X:), m = i, j ,  k and 1 = i, j ,  k 

(0, m # i, j ,  k or 1 # i, j ,  k 

The definitions of symbols appearing in equations (15)-(16) are given in Table I. 
It is a well known fact that most of the numerical solution methods of the advection- 

diffusion equation encounter severe numerical difficulties when employed to solve a pure 
convection problem. In the case of pure convection, D, = D, = 0 and the advection-diffusion 
equation (equation (1)) reduces to a hyperbolic equation. In the proposed method, the nodes 
P: and i = 1 , 2 , .  . . , N are on the same characteristic line of this hyperbolic equation. 
Therefore, the exact solution of the pure convection problem at nodes is given by 

cYc1 =c: ,  i = 1 , 2 , .  . . , N (17) 

Here, we want to study the numerical solution to be obtained in this case. For D, = 0, = 0, 
the matrix Z (equation (16)) becomes a null matrix and, therefore, in view of equation (12) 
the proposed method also gives the exact solution at nodes 

(18) c n + l -  - C  n 

in the case of the pure convection problem. 

APPLICATIONS 

The numerical solution of the horizontal dipersion of a cone-shaped initial concentration 
distribution will be presented. The initial condition is taken as 

[ c, ( 1 - i) , 0 5 r 5 r, 
C(r, 0) = 

Here, r denotes the distance from the centre of the circular base of the cone, and c, is the 
maximum value of the concentration. The centre of the circular base is located at the origin 
of the x - y plane and the radius is chosen as r, = 800 m. 
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Table 11. Parameters used in the test problems 

Problem Velocity (m/s) Eddy coefficients (m”/s) 
- 

No. U 2) 0, Q 

1 0.25 0 2 2 
2 0.25 0 0 2 
3 0.25 0 1 0 - ~ t + i  1 0 - ~ t + 1  

Three test problems are analysed. The velocity field and the eddy coefficients used in each 
problem are summarized in Table 11. The initial spatial mesh is chosen to be symmetric with 
respect to x = 0, y = 0 and x = y lines. The part of the initial mesh in the first quadrant of the 
x - y  plane is illustrated in Figure 3. The same initial mesh is employed for all the test 
problems. 

For the first test problem, the constant concentration lines at t =0, t =2500 s and 
t = 50,000 s are illustrated in Figure 4. The numerical solution gives the correct location of 
the centre of concentrations at t = 2500 s and t = 50,000 s as x = 625 m and x = 12,500 m on 
the y = 0 axis, respectively. The concentration distribution calculated numerically are axi- 
symmetric with respect to the concentration centres with maximum concentrations c/co = 
0.86 at t = 2500 s and clc, = 0.36 at t = 50,000 s. 

The total number of unknowns for the mesh employed is 65 and is independent of the final 
time in which the solution is sought, owing to the fact that the initial mesh moves in time 
with the concentration distribution. However, in order to solve the same problem from t = 0 
to t=50,000s by conventional finite element methods at least a rectangular area of 
dimensions - 1000 5 x 5 14,000 and - 1600 -;c y -;c 1600 must be discretized by a rectangular 
mesh of reasonable increments Ax = Ay = 200 m, which yields more than 650 unknowns 
even when the symmetry of the solution with respect to the x-axis is taken into considera- 
tion. 

0 500 I000 1500 
x ( m )  

Figure 3. A quarter of the initial mesh 
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t = 2500sec. 
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Figure 4. Constant concentration lines at various times, problem 1 

The concentration distributions evaluated numerically at various times are compared with 
exact solutions in Figure 5. The comparison is  very favourable to the method. The time step 
At = 500 s is employed in obtaining the numerical results presented in Figures 4 and 5. By 
choosing a finer mesh in the radial direction the accuracy of the results presented in Figure 5 
can be improved if desired. However, the numerical results appear to be independent of the 
time step size for all practical purposes. For instance, the solutions obtained for A t =  
250,500,2500 and 5000 s cannot be distinguished up to the scale of Figure 5 .  

Since the loss of accuracy due to the use of large time steps is negligible, accurate long 
time solutions can be obtained by marching in time by large but few time steps. This is a very 
favourable feature of this numerical method. The results obtained from the numerical 

- Exoct solution 

o Numerical solution 

0 250 500 750 1000 1250 1500 

Distance from the centre  of concentrat ion ( m )  

Figure 5. A comparison of numerical and exact solutions, problem 1 
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500 

c s 
2. 

- 5 0 0 -  

analysis neither exhibit any oscillation nor produce negative concentrations. The numerical 
solutions of test problem 1, by using the conventional finite element method2' and the finite 
difference method,' are available. At early times ( t  = 2500 s) the axisymmetry of the 
concentration distribution is lost in finite element and finite difference solutions. The 
conventional finite element solutions exhibit oscillation with some negative concentrations. 
The upstream differencing scheme introduces large numerical diffusion. The one-sided flux 
corrected upstream differencing scheme is not oscillatory but produces clipping errors. 

In the second test problem, eddy diffusion coefficients in the flow direction and the 
cross-flow direction are taken as 0, = 2m2/s and 0, = 0, respectively. The constant concent- 
ration lines at t = 0 and t = 50,000 s are illustrated in Figure 6. The concentration distribu- 
tions calculated numerically are symmetric with respect to the axes passing through the 
concentration centre which are parallel to the flow and cross-flow directions. The concentra- 
tion distributions along the two symmetry axes 0 = 0, 0 = 7r/2 and 0 = 7r/4 at t = 2500 and 
t =50,000s are illustrated in Figure 7. The angle between the line passing through the 
concentration centre and the flow direction is denoted by 0. The results presented in Figures 
6 and 7 are obtained by using At =2500s. 

In the Fickian diffusion model, the eddy diffusivity is assumed to be constant in time as in 
test problems 1 and 2. There are several turbulent diffusion in which the effect of 
the growth of the eddy size as the concentrations spread to a larger area with time is taken 
into consideration by choosing eddy diffusivity dependent on the mean concentration. The 
diffusion characteristics of 'dye patch tests' are available as the variance of the concentration 
distribution versus the diffusion time or the eddy diffusivity versus the length scale of 
d i f f u s i ~ n . ' ~ , ~ ~  The diffusion time is defined as the time elapsed since dye release. 

- 
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Figure 6. Constant concentration lines, problem 2 
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Figure 7. Concentrations at t = 2500 s and t = 50,000 s, problem 2 

The third test problem is chosen to demonstrate the utility of the numerical method in the 
case of eddy diffusivities varying with time. A linear time dependence of the eddy 
difhsivities is chosen as shown in Figure 8. This choice gives Dx = D,, = 1 m2/s at t = 0 and 
D, = D,, = 6 m2/s at t = 50,000 s. Thus, the eddy diffusivity used in this problem and test 
problem 1 are of the same order of magnitude. The concentration distribution versus the 
distance from the centre of concentrations for several times is illustrated in Figure 9. The 

0 
0 1X104  2X104 3x lO4 4X1O4 5 X 1 O 4  

T I M E  ( s e c . )  

Figure 8. Time dependent eddy coefficients, problem 3 
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0 2 5 0  5 0 0  7 5 0  1000 1250 I 5 0 0  

Distance  f r o m  the centre  o f  c o n c e n t r a t i o n  ( m )  

Figure 9. Concentrations at various times, problem 3 

numerical results are obtained by using a time step At = 500 s. For all practical purposes, 
results are axisymmetric with respect to the centre of concentration. Neither oscillations nor 
negative concentrations are produced. 

The numerical results presented are obtained on an AMDAHL 470 V/S computer. The 
total processing time used at each time step is less than 0.2s. 

CONCLUSIONS 

A new numerical method for the solution of the transport problem in two space dimensions 
is presented. The novel feature of the method is the utilization of the characteristics of the 
pure advection problem in a space-time finite element framework. The method is employed 
to solve the horizontal dispersion of an effluent patch in an infinite domain. Some of the 
numerical results are compared with exact solutions. The numerical results presented here 
and e l s e ~ h e r e " ~ . ~ ~ . ~ ~  demonstrate that numerical solutions involving movemen%s of steep 
fronts in flow fields with constant or variable velocities and eddy coefficients do not exhibit 
any oscillation or  numerical diffusion. A very favourable feature of the method is the 
capability of accurately solving advection dominated transport problems large time steps for 
which the Courant number is well over one. 
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